Numerical Solutions to Fractional Perturbed Volterra Equations

نویسنده

  • B. Bandrowski
چکیده

and Applied Analysis 3 where Θ is a weight function, is called the scalar product of functions f, g on the interval 0, t . Let us recall that two functions are orthonormal when ∀i,j 〈 φi t , φj t 〉 δij , 2.2 where δij is the Kronecker delta. We are looking for an approximate solution to 1.1 as an element of the subspaceHnφ , spanned on nφ first basic functions {φj : j 1, 2, . . . , nφ} unφ x, t nφ ∑ j 1 cj x φj t . 2.3 For simplicity of notations, let us consider 1.1 in one spatial dimension only. Inserting 2.3 into 1.1 , one obtains unφ x, t u x, 0 ∫ t 0 a t − s a ∗ k t − s Δunφ x, s ds ∫ t 0 b t − s unφ x, s ds nφ x, t , 2.4 where function nφ represents the approximation error function. From 2.3 and 2.4 , one gets nφ x, t nφ ∑ j 1 cj x φj t − ∫ t 0 a t − s a ∗ k t − s nφ ∑ j 1 d2 dx2 cj x φj s ds − ∫ t 0 b t − s nφ ∑ j 1 cj x φj s ds − u x, 0 . 2.5 Definition 2.2. The Galerkin approximation of 1.1 is the function unφ ∈ Hnφ , such that nφ ⊥ Hnφ , that is, ∀j 1,2,...,n 〈 nφ x, t , φj t 〉 0. 2.6 4 Abstract and Applied Analysis It follows from Definitions 2.2 and 2.1 and 2.5 that 0 ∫ t 0 ⎡ ⎣ nφ ∑ j 1 cj x φj τ ⎤ ⎦φi τ Θ τ dτ − ∫ t 0 u x, 0 φi τ Θ τ dτ − ∫ t 0 ⎡ ⎣ ∫ τ 0 a τ − s a ∗ k τ − s nφ ∑ j 1 d2 dx2 cj x φj s ds ⎤ ⎦φi τ Θ τ dτ − ∫ t 0 ⎡ ⎣ ∫ τ 0 b τ − s nφ ∑ j 1 cj x φj s ds ⎤ ⎦φi τ Θ τ dτ for i 1, 2, . . . , nφ. 2.7 Therefore ∫ t 0 u x, 0 φi τ Θ τ dτ ∫ t 0 ⎡ ⎣ nφ ∑ j 1 cj x φj τ ⎤ ⎦φi τ Θ τ dτ − ∫ t 0 ⎡ ⎣ ∫ τ 0 a τ − s a ∗ k τ − s nφ ∑ j 1 d2 dx2 cj x φj s ds ⎤ ⎦φi τ Θ τ dτ − ∫ t 0 ⎡ ⎣ ∫ τ 0 b τ − s nφ ∑ j 1 cj x φj s ds ⎤ ⎦φi τ Θ τ dτ, i 1, 2, . . . , nφ. 2.8 Using 2.2 , 2.8 can be written in an abbreviated form gi x ci x − nφ ∑ j 1 aij d2 dx2 cj x − nφ ∑ j 1 bijcj x , 2.9 where gi x u x, 0 ∫ t 0 φi τ Θ τ dτ, 2.10 aij ∫ t 0 [∫ τ 0 a τ − s a ∗ k τ − s φj s ds ] φi τ Θ τ dτ, 2.11 bij ∫ t 0 [∫ τ 0 b τ − s φj s ds ] φi τ Θ τ dτ. 2.12 In general aij / aji. The solution of the set of nφ coupled differential equations 2.9 for coefficients cj x , j 1, 2, . . . , nφ provides Galerkin approximation 2.3 to 1.1 . Abstract and Applied Analysis 5 3. Discretization Equations can be solved using discretization in a space variable. In one-dimesional case, let us introduce a grid of points x1, x2, . . . , xnh , where xl − xl−1 h. The grid approximation of a second derivative of a function f : R → R is given by f ′′ x ≈ f x − h − 2f x f x h h2 O ( h3 ) . 3.1and Applied Analysis 5 3. Discretization Equations can be solved using discretization in a space variable. In one-dimesional case, let us introduce a grid of points x1, x2, . . . , xnh , where xl − xl−1 h. The grid approximation of a second derivative of a function f : R → R is given by f ′′ x ≈ f x − h − 2f x f x h h2 O ( h3 ) . 3.1 Then the set of equations 2.9 takes the following form: gi xl ci xl 1 h2 nφ ∑ j 1 aij [−cj xl−1 2cj xl − cj xl 1 ] − nφ ∑ j 1 bijcj xl ci xl 1 h2 nφ ∑ j 1 [ −aijcj xl−1 ( 2aij − hbij ) cj xl − aijcj xl 1 ] , 3.2 where i 1, 2, . . . , nφ and l 1, 2, . . . , nh. In two-dimensional case, with the grid x1, x2, . . . , xnh × y1, y2, . . . , ynh , where xl − xl−1 ym − ym−1 h for l,m 2, 3, . . . , nh, the set of equations 2.9 takes the form gi ( xl, ym ) ci ( xl, ym ) 1 h2 nφ ∑ j 1 aij [−cj(xl−1, ym) − cj(xl, ym−1) 4cj ( xl, ym ) − cj(xl 1, ym) − cj(xl, ym 1)] − nφ ∑ j 1 bijcj ( xl, ym ) ci ( xl, ym ) 1 h2 nφ ∑ j 1 [ − aijcj ( xl−1, ym ) − aijcj(xl, ym−1) ( 4aij − hbij ) cj ( xl, ym ) − aijcj(xl 1, ym) − aijcj(xl, ym 1) ] . 3.3 Both sets of linear equations 3.2 and 3.3 can be written in a matrix form

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solutions structure of integrable families of Riccati equations and their applications to the perturbed nonlinear fractional Schrodinger equation

Some preliminaries about the integrable families of Riccati equations and solutions structure of these equations in several cases are presented in this paper, then by using of definitions for fractional derivative we apply the new extended of tanh method to the perturbed nonlinear fractional Schrodinger equation with the kerr law nonlinearity. Finally by using of this method and solutions of Ri...

متن کامل

Shifted Chebyshev Approach for the Solution of Delay Fredholm and Volterra Integro-Differential Equations via Perturbed Galerkin Method

The main idea proposed in this paper is the perturbed shifted Chebyshev Galerkin method for the solutions of delay Fredholm and Volterra integrodifferential equations. The application of the proposed method is also extended to the solutions of integro-differential difference equations. The method is validated using some selected problems from the literature. In all the problems that are considered...

متن کامل

Existence and multiplicity of positive solutions for a coupled system of perturbed nonlinear fractional differential equations

In this paper, we consider a coupled system of nonlinear fractional differential equations (FDEs), such that both equations have a particular perturbed terms. Using emph{Leray-Schauder} fixed point theorem, we investigate the existence and multiplicity of positive solutions for this system.

متن کامل

The analytical solutions for Volterra integro-differential equations within Local fractional operators by Yang-Laplace transform

In this paper, we apply the local fractional Laplace transform method (or Yang-Laplace transform) on Volterra integro-differential equations of the second kind within the local fractional integral operators to obtain the analytical approximate solutions. The iteration procedure is based on local fractional derivative operators. This approach provides us with a convenient way to find a solution ...

متن کامل

‎Numerical solution of nonlinear fractional Volterra-Fredholm integro-differential equations with mixed boundary ‎conditions‎

The aim of this paper is solving nonlinear Volterra-Fredholm fractional integro-differential equations with mixed boundary conditions‎. ‎The basic idea is to convert fractional integro-differential equation to a type of second kind Fredholm integral equation‎. ‎Then the obtained Fredholm integral equation will be solved with Nystr"{o}m and Newton-Kantorovitch method‎.  ‎Numerical tests for demo...

متن کامل

A Numerical Scheme for Solving Nonlinear Fractional Volterra Integro-Differential Equations

In this paper, a Bernoulli pseudo-spectral method for solving nonlinear fractional Volterra integro-differential equations is considered. First existence of a unique solution for the problem under study is proved. Then the Caputo fractional derivative and Riemman-Liouville fractional integral properties are employed to derive the new approximate formula for unknown function of the problem....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014